旅行者1号(Voyager 1)
Voyager spacecraft.jpg
艺术家描绘的旅行者1号
任務型態 探测外行星太阳圈星际物质
營運者 NASA / JPL
國際衛星標識符 1977-084A[1]
衛星目錄號 10321[2]
網址 voyager.jpl.nasa.gov
任務時長 41年3个月又11天
行星环任务: 3年3个月零9天
星际任务: 38年2天 (持续中)
航天器
製造者 喷射推进实验室
發射質量 825.5公斤(1,820磅)
功率 420 W
任務開始
發射日期 1977年9月5日12:56:00 UTC
(41年3个月又11天)
載具 Titan IIIE
發射場 卡纳维尔角 LC-41
飛掠木星
最接近 1979年3月5日
距離 349,000 km(217,000 mi)
飛掠土星
最接近 1980年11月12日
距離 124,000 km(77,000 mi)
飛掠泰坦 (大气研究)
最接近 1980年11月12日
距離 6,490 km(4,030 mi)

旗舰任务
← 旅行者2号 伽利略号

旅行者1号Voyager 1)是美国国家航空航天局(NASA)研制的一艘无人外太阳系太空探测器,重825.5kg,于1977年9月5日发射,截止到2018年仍然正常运作。[3]它是有史以来距离地球最远的人造飞行器,也是第一个离开太阳系的人造飞行器。受惠于几次的引力加速,旅行者1号的飞行速度比现有任何一个飞行器都要快些,这使得较它早两星期发射的姊妹船旅行者2号永远都不会超越它。它的主要任务在1979年经过木星系统、1980年经过土星系统之后,结束于1980年11月20日。它也是第一个提供了木星土星以及其卫星详细照片的探测器。2012年8月25日,“旅行者1号”成为第一个穿越太阳圈并进入星际介质的宇宙飞船。截至2018年10月18日止,旅行者1号正处于离太阳143.6 AU(2.15×1010 km)的位置[4],是离地球最远的人造物体。

旅行者1号目前在沿双曲线轨道英语Hyperbolic trajectory飞行,并已经达到了第三宇宙速度。这意味着他的轨道再也不能引导太空船飞返太阳系,与没法联络的先驱者10号及已停止操作的先驱者11号一样,成为了一艘星际太空船

旅行者1号原先的主要目标,是探测木星土星及其卫星。现在任务已变为探测太阳风顶,以及对太阳风进行粒子测量。两艘旅行者号探测器,都是以三块放射性同位素热电机作为动力来源。这些发电机目前已经大大超出了起先的设计寿命,一般认为它们在大约2020年之前,仍然可提供足够的电力令太空船能够继续与地球联系。核电池能够保证旅行者号上搭载的科学仪器继续工作至2025年。2036年,讯号传输的电力将消耗殆尽。[5]一旦电池耗尽,“旅行者1号”仍将继续向银河系中心前进,但不会再向地球发回数据。

计划背景

在20世纪60年代,NASA提出行星之旅计划英语Grand Tour program(Planetary Grand Tour),计划发射一对探测器飞越所有的外行星,并计划于70年代开始着手进行。[6] 其中先锋10号搜集到的数据让科学家对木星磁场有更进一步的了解,帮助工程师设计更佳的探测器,以更有效地应对木星周围强烈的辐射环境。[7]但由于预算过高,行星之旅计划便遭取消。

旅行者1号原本被当成水手号计划的一部分,并被命名为水手11号。 但是后来由于预算遭到削减, NASA便成立一个独立的计划:木星-土星水手计划,并同时将此计划作为行星之旅计划的缩小版本。后来此计划被改称为旅行者计划,这是因为天文学家认为探测器的设计已经大幅超过水手号计划的探测器,所以它们值得获得一个独立的名称。[8]

构造

旅行者1号是由喷气推进实验室建造的。[9][10][11]它有16个联氨推进器,三轴稳定陀螺仪,以及将探测器的无线电天线指向地球的仪器。总的来说,这些仪器是姿态调节控制子系统(AACS)的一部分,该系统还包括了大多数仪器的冗余单元和8个备用推进器。旅行者1号还拥有11个科学仪器,用于研究在太空中飞行时可能会遭遇的天体,例如行星[12]

通信系统

用于旅行者号的直径3.7米(12英尺)高增益抛物面天线

旅行者1号的无线电通信系统被设计用来达到和超越太阳系的极限。该通信系统包括一个直径3.7米(12英尺)的抛物面天线高增益天线,通过地球上的三个深空网络站发送和接收无线电波[13]该飞行器通常以2.3 GHz或8.4 GHz的频率在深空网络通道18中传输数据,而从地球到航行者的信号則以2.1 GHz發送。[14]

当旅行者1号无法与地球直接通信时,它的数字磁带记录器(DTR)可以记录大约64千字节的数据,以便在另一个时间传输。[15]旅行者1号发出的信号需要19个小时才能到达地球。[4]

电池

旅行者1号在吊杆上安装了三个放射性同位素热电机(RTG)。 每个MHW-RTG包含24个压制的钚-238氧化物球体。[16] RTG在旅行者1号刚发射时能够产生大约470W的电力,其余的则作为余热消散。[17] 随着时间的推移,RTG的功率输出逐渐下降(由于燃料和热电偶的半衰期约为87.7年),但该船的RTG能继续让船运行至2025年。[12][16]

截至2018年12月16日,旅行者1号还有72.16%的钚-238燃料(与刚发射时相比)。至2050年,约将剩余56.5%的燃料。

电脑

与其他机载仪器不同的是,旅行者的可见光的摄像头的操作不是自动的,而是由机载数字电脑(飞行数据子系统)的一个成像参数表控制的。自20世纪90年代以来,太空探测器通常拥有完全自動的相机。[18]

计算机指令子系统(CCS)負責控制着摄像机。CCS包含了固定的计算机程序,如命令解码、故障检测和校正例程、天线指向例程和航天器测序例程。这台电脑是上世纪70年代海盗号轨道飞行器使用的改良版。[19]在航行器中两个定制的CCS子系统的硬件是相同的,只有软件上有細微的差異。

姿态調節控制子系统(AACS)控制着航天器的方向(姿态)。它使高增益天线指向地球,控制姿态变化,并指向扫描平台。两个旅行者的定制AACS系统都是一样的。[20][21]

科学仪器

仪器名称 缩写 概要
影像科学系统
Imaging Science System
(停止运作)
(ISS) 利用双摄像镜头系统(窄角/广角)来提供木星、土星和其他物体的图像。 更多资讯
滤镜
窄角镜头滤镜[22]
名称 波长 频谱 灵敏度
无色 280–640 nm
Voyager - Filters - Clear.png
UV 280–370 nm
Voyager - Filters - UV.png
紫光 350–450 nm
Voyager - Filters - Violet.png
蓝光 430–530 nm
Voyager - Filters - Blue.png
' '
Clear.png
'
绿光 530–640 nm
Voyager - Filters - Green.png
' '
Clear.png
'
橙光 590–640 nm
Voyager - Filters - Orange.png
' '
Clear.png
'
广角镜头滤镜[23]
名称 波长 频谱 灵敏度
无色 280–640 nm
Voyager - Filters - Clear.png
' '
Clear.png
'
紫光 350–450 nm
Voyager - Filters - Violet.png
蓝光 430–530 nm
Voyager - Filters - Blue.png
CH4-U 536–546 nm
Voyager - Filters - CH4U.png
绿光 530–640 nm
Voyager - Filters - Green.png
Na-D 588–590 nm
Voyager - Filters - NaD.png
橙光 590–640 nm
Voyager - Filters - Orange.png
CH4-JST 614–624 nm
Voyager - Filters - CH4JST.png
  • 首席研究员: 布拉德福德·史密斯 / 亚利桑那大学(PDS/PRN网站)
  • 数据: PDS/PDI数据目录、PDS/PRN数据目录
无线电科学系统
Radio Science System
(停止运作)
(RSS) 利用旅行者航天器的电信系统来确定行星和卫星的物理特性(电离层、大气、质量、重力场、密度)以及土星环中物质的数量、尺寸分布以及环本身的尺寸。 更多资讯
  • 首席研究员:G. 泰勒 / 斯坦福大学(PDS/PRN概述)
  • 数据:PDS/PPI数据目录、PDS/PRN数据目录 VG_2803、NSSDC数据存档
红外干涉仪光谱仪
Infrared Interferometer Spectrometer
(停止运作)
(IRIS) 调查星体全球和局部的能量平衡和大气组成。获取行星和卫星的垂直温度分布、组成与热性质,以及土星环中的粒子大小。 更多资讯
  • 首席研究员: 鲁道夫·哈内尔 / NASA戈达德太空飞行中心(PDS/PRN网站)
  • 数据: PDS/PRN数据目录、PDS/PRN扩展数据目录 VGIRIS_0001,VGIRIS_002、NSSDC Jupiter数据存档
紫外光谱仪
Ultraviolet Spectrometer
(停止运作)
(UVS) 用于测量大气特性及测量辐射。 更多资讯
  • 首席研究员: A. 布罗德富特 / 南加州大学 (PDS/PRN网站)
  • 数据: PDS/PRN数据目录
三轴磁通门磁强计
Triaxial Fluxgate Magnetometer
(运作中)
(MAG) 调查木星和土星的磁场,太阳风与这些行星的磁球的相互作用,以及行星际空间的磁场到太阳风和星际空间的磁场之间的边界。 更多资讯
  • 首席研究员: 诺曼·F·尼斯 / NASA戈达德太空飞行中心(网站)
  • 数据: PDS/PPI数据目录、NSSDC 数据存档
电浆光谱仪
Plasma Spectrometer
(部分运作)
(PLS) 研究电浆体离的微观特性,并测量研究能量范围从5eV到1keV间的电子。 更多资讯
  • 首席研究员: 约翰理查森 / MIT (website)
  • 数据: PDS/PPI数据目录、NSSDC 数据存档
低能带电粒子
Low Energy Charged Particle Instrument
(运作中)
(LECP) 测量离子,电子的能量通量和角度分布差异以及能量离子组成的差异。 更多资讯
  • 首席研究员: 斯塔玛提奥·克里明吉斯 / JHU / APL / 马里兰大学(JHU/APL网站 / UMD网站 / KU网站)
  • 数据: UMD数据、PDS/PPI数据目录、NSSDC数据存档
宇宙射线系统
Cosmic Ray System
(运作中)
(CRS) 用来查明宇宙射线的起源和加速过程、历史以及动力贡献、在宇宙射线源中元素的核合成、宇宙射线在行星际介质中的行为以及被捕获的行星高能粒子中的环境。 更多资讯
  • 首席研究员: 爱德华·C·斯通 / Caltech / NASA戈达德太空飞行中心(网站)
  • 数据: PDS/PPI数据目录、 NSSDC数据存档
行星无线电天文调查系统
Planetary Radio Astronomy Investigation
(停止运作)
(PRA) 利用扫频无线电接收机研究来自木星和土星的无线电发射信号。 More
  • 首席研究员: 詹姆斯沃里克 / 科罗拉多大学
  • 数据: PDS/PPI数据目录, NSSDC数据存档
偏振计系统
Polarimeter|Photopolarimeter System
(部分运作)
(PPS) 利用带有偏振器的望远镜收集关于木星和土星的表面结构、组成、大气散射特性和密度的资讯。 更多资讯
  • 首席研究员: 亚瑟连恩 / 喷气推进实验室 (PDS/PRN网站)
  • 数据: PDS/PRN数据目录
电浆波系统
Plasma Wave System
(运作中)
(PWS) 对木星和土星的电子密度分布图以及局域波粒子相互作用的基本资讯提供连续、无鞘的测量,有助于研究磁层。 更多资讯
  • 首席研究员: 唐纳德古尼特 / 爱荷华大学(网站)
  • 数据: PDS/PPI数据目录

任务概要

旅行者1号最初计划属于美国水手号计划的一部分,它的设计利用了属于当时的新技术引力加速。幸运的是,这次任务刚巧碰上了176年一遇的行星几何排列。太空船只需要少量燃料以作航道修正,其余时间可以借助各个行星的引力加速,以一艘太空船就能造访太阳系里的四颗气体巨行星木星土星天王星海王星。两艘姊妹船旅行者1号及2号就是为了这次机会而设计,它们的发射时间是被计算过以便尽量充分利用这次机会。亦拜这次机会所赐,两艘太空船只需要用上12年的时间就能造访四个行星,而非一般的30年时间。

时间表

Voyager 1 skypath 1977-2030.png
旅行者1号从地球上发射后的轨迹。它在1981年于土星的位置与黄道分道扬镳,转往蛇夫座方向前进至今。
日期 事件
1977-09-05 12:56:00 UTC 太空船发射升空。
1977-12-10 进入主小行星带
1977-12-19 超越旅行者2号。(示意图)
1978-09-08 离开主小行星带。
1979-01-06 开始木星观测阶段。
1980-08-22 开始土星观测阶段。
1980-12-14 延伸任务开始。
延伸任务
1990-02-14 旅行者1号拍摄了整个旅行者计划中最后一张相片太阳系全家福
1998-02-17 旅行者1号超越先锋10号,成为距离太阳最遥远的航天器,距离地球约69.419 AU。 旅行者一号每年以超过1 AU的速度离开太阳,比先锋10号还要快。
2004-12-17 于距地球94 AU处通过终端震波并进入了日鞘
2007-02-02 终止了等离子子系统运作。
2007-04-11 终止了等离子体子系统的加热器。
2008-01-16 终止了行星无线电天文实验运作。
2012-08-25 于距地球121 AU处越过太阳圈,进入星际空间
2014-07-07 进一步确认该探测器已抵达星际空间。
2016-04-19 终止了紫外光谱仪运作。
2017-11-28 轨道修正推进器再次点火。[24]

发射和​​轨迹

旅行者1号在1977年9月5日于佛罗里达州卡纳维尔角,被搭载在一枚泰坦3号E半人马座火箭上发射升空。刚好于旅行者2号在同年8月20日的发射两个星期之后不久。虽然发射时间较2号为后,但1号却被发射进入更短的轨迹之中[25],让它又比2号快一点到达到木星土星[26]

最初,因为在泰坦3号E火箭燃烧过程的第二阶段里出现了约一秒钟的燃烧不足,使地面的工作人员曾担心会使太空船因此而不能到达木星。后来幸好证实了在泰坦三E运载火箭的上层仍有足够的燃料燃烧。